loader
Home
Dr. Jianhua Luo

EDITORIAL BOARD MEMBER - Dr. Jianhua Luo


Dr. Jianhua Luo

Department of Pathology
University of Pittsburgh School of Medicine
USA

BIOGRAPHY:

Dr. Luo has been studying molecular pathology related to human malignancies in the last 25 years. Currently, he is a Professor of Pathology and Director of High Throughput Genome Center at University of Pittsburgh. In the last 17 years, Dr. Luo has been largely focusing on the genetic and molecular mechanism of human prostate and hepatocellular carcinomas. In this period, his group has identified and characterized several genes that are related to prostate cancer and hepatocellular carcinoma, including SAPC, myopodin, CSR1, GPx3, ITGA7, MCM7, MT1h and GPC3. He has characterized several signaling pathways that play critical role in prostate cancer development, including Myopodin-ILK-MCM7 inhibitory signaling, myopodin-zyxin motility inhibition pathway, CSR1-CPSF3, CSR1-SF3A3 and CSR1-XIAP apoptotic pathways, MT1h-EHMT1 epigenomic signaling, ITGA7-HtrA2 tumor suppression pathway, GPx3-PIG3 cell death pathway, AR-MCM7 and MCM7-SF3B3 oncogenic pathways. He proposed prostate cancer field effect in 2002. He is one of the pioneers in utilizing high throughput gene expression and genome analyses to analyze field effects in prostate cancer and liver cancer. He is also the first in using methylation array and whole genome methylation sequencing to analyze prostate cancer. Dr. Luo’s group found that patterns of copy number variants of certain specific genome loci are predictive of prostate cancer clinical outcomes, regardless tissue origin. Recently, his group discovered several novel fusion transcripts and their association with aggressive prostate cancer. One of the fusion genes called MAN2A1-FER, was found present in 6 different types of human cancers. He later defined a critical MAN2A1-FER/EGFR signaling pathway that is essential for MAN2A1-FER mediated transformation activity. His group also developed a genome intervention strategy targeting at the chromosomal breakpoint of fusion gene to treat cancers. Overall, these findings advance our understanding of how cancer develops and behaves, and lay down the foundation for better future diagnosis and treatment of human malignancies.

RESEARCH INTERESTS: