1. Brandi G, Farioli A, Astolfi A, Biasco G, Tavolari S. Genetic heterogeneity in cholangiocarcinoma: a major challenge for targeted therapies. Oncotarget, 2015;6(17):14744-14753.
2. Francipane M. Lagasse E. A Study of Cancer Heterogeneity: From Genetic Instability to Epigenetic Diversity in Colorectal Cancer. Cancer Targeted Drug Delivery, 2013;363-388.
3. Skinner M. Stem cells: Insights into breast cancer heterogeneity. Nature Reviews Cancer, 2010;163-163.
4. Naderi A, Teschendorff A, Barbosa-Morais N, Pinder S, Green A, Powe DG, et al. (2006). A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene, 2007;26(10):1507-1516.
5. Youn A, Simon R. Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics, 2011;27(2):175-181.
6. Vandin F, Upfal E, Raphael B. Algorithms and Genome Sequencing: Identifying Driver Pathways in Cancer. Computer, 2012;39-46.
7. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer Nature Reviews Cancer, 2005;5(4):275-284.
8. Broekman F, Giovannetti E, Peters GJ. Tyrosine kinase inhibitors: Multitargeted or single-targeted? World J Clin Oncol, 2011;2(2):80-93.
9. Torti D, Trusolino L. Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: Promises and perils. EMBO Mol Med EMBO Molecular Medicine, 2011;3(11):623-636.
10. Sharma S, Settleman J. Oncogene addiction: Setting the stage for molecularly targeted cancer therapy. Genes Dev, 2007;21(24):3214-3231.
11. Chaft J, Oxnard G, Sima C, Kris M, Miller V, Riely G. Disease Flare after Tyrosine Kinase Inhibitor Discontinuation in Patients with EGFR-Mutant Lung Cancer and Acquired Resistance to Erlotinib or Gefitinib: Implications for Clinical Trial Design. Clin Cancer Res, 2011;17(19):6298-6303.
12. Goldberg S, Oxnard G, Digumarthy S, Muzikansky A, Jackman D, Lennes IT, et al. Chemotherapy With Erlotinib or Chemotherapy Alone in Advanced Non- Small Cell Lung Cancer With Acquired Resistance to EGFR Tyrosine Kinase Inhibitors. Oncologist, 2013;18(11):1214-1220.
13. Vasile E, Tibaldi C, Chella A, Falcone A. Erlotinib after Failure of Gefitinib in Patients with Advanced Non-small Cell Lung Cancer Previously Responding to Gefitinib. J Thorac Oncol, 2008;3(8):912-914.
14. Song Z, Yu X, He C, Zhang B, Zhang Y. Re-administration after the failure of gefitinib or erlotinib in patients with advanced non-small cell lung cancer. J Thorac Dis., 2013;5(4):400-405.
15. Sequist L, Soria J, Goldman J, Wakelee H, Gadgeel S, et al. Rociletinib in EGFR-mutated non-small-cell lung cancer. N Engl J Med, 2015;372(18):1700-1709.
16. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature, 2012;485:251-255.
17. Re M, Vasile E, Falcone A, Danesi R, Petrini I. Molecular analysis of cellfree circulating DNA for the diagnosis of somatic mutations associated with resistance to tyrosine kinase inhibitors in non-small-cell lung cancer. Expert Rev Mol Diagn, 2014;14(4):453-468.
18. Nishioka C, Ikezoe, T, Yang J, Udaka K, Yokoyama A. Imatinib causes epigenetic alterations of PTEN gene via upregulation of DNA methyltransferases and polycomb group proteins. Blood Cancer J, 2011;1(12):e48.
19. Yamaguchi H, Hsu J, Chen C, Wang Y, Hsu M, Chang SS, et al. Caspase-Independent Cell Death Is Involved in the Negative Effect of EGF Receptor Inhibitors on Cisplatin in Non-Small Cell Lung Cancer Cells. Clin Cancer Res, 2013;19(4):845-854.
20. Antonicelli A, Cafarotti S, Indini A, Galli A, Russo A, et al. EGFR-Targeted Therapy for Non-Small Cell Lung Cancer: Focus on EGFR Oncogenic Mutation. Int J Med Sci, 2013;10(3):320-330.
21. Karachaliou N, Rosell R. Targeted treatment of mutated EGFRexpressing non-small-cell lung cancer: Focus on erlotinib with companion diagnostics. LCTT Lung Cancer: Targets and Therapy, 2014;73-79.
22. Kim Y, Apetri M, Luo B, Settleman J, Anderson K. Differential Effects of Tyrosine Kinase Inhibitors on Normal and Oncogenic EGFR Signaling and Downstream Effectors. Mol Cancer Res, 2015;13(4):765-774.
23. Engelman J, Settleman J. Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr Opin Genet Develop, 2008;18(1):73-79.
24. Niki Karachaliou N, Mayo-de las Casas C, Queralt C, De Aguirre I, Melloni B, Cardenal F, et al. (2015). Association of EGFR L858R Mutation in Circulating Free DNA With Survival in the EURTAC Trial. JAMA Oncol, 2015;1(2):149-157.
25. Bath C. EGFR L858R Mutation in Blood Sample May Serve as Surrogate for Biopsy in Determining EGFR-Mutation Status. The ASCO Post Volume 6, Issue 9, 2015.
26. Shannon A, Bouchier-Hayes D, Condron C, Toomey D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev, 2013;29(4):297-307.
27. Oon M, Thike A, Tan S, Tan PH. Cancer stem cell and epithelial-mesenchymal transition markers predict worse outcome in metaplastic carcinoma of the breast. Breast Cancer Res Treat, 2015;150(1):31-41.
28. Sun L, Yao Y, Liu B, Lin Z, Lin L, Yang M, et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene, 2011;31(4):432-445.
29. Tang D. Understanding cancer stem cell heterogeneity and plasticity. Cell Res Cell Res. 2012;22(3):457-472.
30. Dudek A, Zolnierek J, Dham A, Lindgren B, Szczylik C. Sequential therapy with sorafenib and sunitinib in renal cell carcinoma. Cancer, 2008;115(1):61-67.
31. Reguart N. Role of erlotinib in first-line and maintenance treatment of advanced non-small-cell lung cancer. Cancer Manag Res. 2010;2143-143.
32. Johnson B, Jackman D, Janne PA. Rationale for a Phase I Trial of Erlotinib and the Mammalian Target of Rapamycin Inhibitor Everolimus (RAD001) for Patients with Relapsed Non Small Cell Lung Cancer. Clin Cancer Res. 2007;13(15 Pt 2):s4628-4631.
33. Papadimitrakopoulou V, Soria J, Jappe A, Jehl V, Klimovsky J, Johnson BE. Everolimus and Erlotinib as Second- or Third-Line Therapy in Patients with Advanced Non-Small-Cell Lung Cancer. J Thorac Oncol, 2012;7(10):1594-1601.
34. Banerji U. Heat Shock Protein 90 as a Drug Target: Some Like It Hot. Clin Cancer Res, 2009;15(1):9-14.
35. Bao R, Lai C, Wang D, Qu H, Yin L, Zifcak B, et al. Targeting heat shock protein 90 with CUDC-305 overcomes erlotinib resistance in non-small cell lung cancer. Mol Cancer Ther, 2009;8(12):3296-3306.
36. Kobayashi N, Toyooka S, Soh J, Yamamoto H, Dote H, Kawasaki K, et al. The anti-proliferative effect of heat shock protein 90 inhibitor, 17-DMAG, on non-small-cell lung cancers being resistant to EGFR tyrosine kinase inhibitor. Lung Cancer, 2012;75(2):161-166.
37. Herbst R, Ansari R, Bustin F, Flynn P, Hart L, Otterson GA, et al. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): A doubleblind, placebo-controlled, phase 3 trial. Lancet. 2011;377(9780):1846-1854.
38. Dy G, Infante J, Eckhardt S, Novello S, Ma W, Jones SF, et al. Phase Ib trial of the oral angiogenesis inhibitor pazopanib administered concurrently with erlotinib. Invest New Drugs, 2012;31(4):891-899.
39. Chang S, Chang C, Shih J. The Role of Epidermal Growth Factor Receptor Mutations and Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in the Treatment of Lung Cancer. Cancers, 2011;3(2):2667-2678.
40. Kumar R, Musiyenko A, Barik S. Plasmodium falciparum calcineurin and its association with heat shock protein 90: Mechanisms for the antimalarial activity of cyclosporin A and synergism with geldanamycin. Mol Biochem Parasitol, 2005;141(1):29-37.
41. Guo F, Rocha K, Pranpat M, Fiskus W, Boyapalle S, Kumaraswamy S, et al. Abrogation of Heat Shock Protein 70 Induction as a Strategy to Increase Antileukemia Activity of Heat Shock Protein 90 Inhibitor 17-Allylamino-Demethoxy Geldanamycin. Cancer Res, 2005;65(22):10536-10544.
42. Roberts P, Stinchcombe T, Der C, Socinski M. Personalized Medicine in Non-Small-Cell Lung Cancer: Is KRAS a Useful Marker in Selecting Patients for Epidermal Growth Factor Receptor-Targeted Therapy? J Clin Oncol, 2010;28(31):4769-4777.
43. Mesa R. Tipifarnib: Farnesyl transferase inhibition at a crossroads. Expert Rev Anticancer Ther, 2006;6(3):313-319.
44. Mar A, Chu C, Shiau C, Lee T. 82 Regorafenib resistance in colorectal carcinoma is associated with enhanced expression of type II interleukin 1 receptor and reversed by MEK/ERK inhibitor. European Journal of Cancer, 2014;50(6):31-31.
45. Spreafico A, Tentler J, Pitts T, Tan A, Gregory M, Arcaroli JJ, et al. Rational combination of a MEK inhibitor, selumetinib, and the Wnt/calcium pathway modulator, cyclosporin A, in preclinical models of colorectal cancer. Clinical Cancer Research, 2013;19(15):4149-4162.
46. Wang J, Huang S, Marzese D, Hsu S, Kawas N, Chong KK, et al. Epigenetic Changes of EGFR Have an Important Role in BRAF Inhibitor-Resistant Cutaneous Melanomas. J Investig Dermatol, 2014;135(2):532-541.
47. Bettegowda C, Sausen M, Leary R, Kinde I, Agrawal N, Bartlett B, et al. Detection of Circulating Tumor Dna In Early and Late Stage Human Malignancies. Sci Transl Med, 2004;6(224):224.
48. Bartkowiak K, Riethdorf S, Pantel K. The Interrelating Dynamics of Hypoxic Tumor Microenvironments and Cancer Cell Phenotypes in Cancer Metastasis. Cancer Microenviron, 2012;5(1):59-72.
49. Garcia-Olmo D, Garcia-Olmo D, Dominguez-Berzosa C, Guadalajara H, Vega L, Garcia-Arranz M. Oncogenic transformation induced by cell-free nucleic acids circulating in plasma (genometastasis) remains after the surgical resection of the primary tumor: A pilot study. Expert Opin Biol Ther. 2012;12 Suppl 1:S61-68.
50. Trejo-Becerril C, Perez-Cardenas E, Taja-Chayeb L, Anker P, Herrera- Goepfert R, Medina-Velazquez LA, et al. Cancer Progression Mediated by Horizontal Gene Transfer in an In Vivo Model. PLoS One, 2012;7(12):e52754.
51. Widschwendter M, Menon U. Circulating Methylated DNA: A New Generation of Tumor Markers. Clin Cancer Res, 2006;12(24):7205-7208.
52. Ignatiadis M, Dawson S. Circulating tumor cells and circulating tumor DNA for precision medicine: Dream or reality? Ann Oncol, 2014;25(12):2304-2313.
53. Smerage J. Changing Chemotherapy Not Beneficial for Metastatic Breast Cancer Patients with Elevated Circulating Tumor Cells. San Antonio Breast Cancer Symposium, 2014.
54. Sharma G, Mirza S, Parshad R, Gupta S, Ralhan R. DNA methylation of circulating DNA: A marker for monitoring efficacy of neoadjuvant chemotherapy in breast cancer patients. Tumor Biol, 2012;33(6):1837-1843.
55. Easwaran H, Tsai H, Baylin S. Cancer Epigenetics: Tumor Heterogeneity, Plasticity of Stem-like States, and Drug Resistance. Molecular Cell, 2014;54(5):716-727.