Combined Approach to a Giant Esophageal Polyp: Case Report and Literature Review

Krasimir Ivanov1, Valentin Ignatov1, Dilyan Petrov1, Anton Tonev1*, Aleksandar Zlatarov1, Boryana Naydenova1, Nikolay Sapundzhiev1 and Nikola Kolev1

1Department of General and Operative Surgery, Faculty of Medicine, Medical University “Prof. Paraskev Stoyanov” of Varna, Varna, Bulgaria
2Department of Anesthesiology, Emergency and Intensive Medicine, Faculty of Medicine, Medical University “Prof. Paraskev Stoyanov” of Varna, Varna, Bulgaria
3Department of Neurosurgery and ENT Diseases, Division of ENT Diseases, Faculty of Medicine, Medical University “Prof. Paraskev Stoyanov” of Varna, Varna, Bulgaria

*Corresponding author: Assoc. Prof. Anton Tonev, MD, PhD, Department of General and Operative Surgery, Medical University “Prof. Paraskev Stoyanov” of Varna, “St. Marina” University Hospital of Varna, 1 Hristo Smirnenski Street, Varna 9010, Bulgaria, Email: teraton@abv.bg

Abstract

Benign esophageal tumours are less common than esophageal malignancies. Benign lesions may reach gigantic size and then provoke dysphagia, chest pain, food regurgitation, and weight loss typical of other more common diseases of the esophagus. There are scanty reports in the literature available describing different approaches in the surgical treatment of giant esophageal polyps. We present a case of a 65-year-old male patient with a 14.5×5.5×4 cm fibrovascular esophageal polyp originating from the hypopharynx. The diagnostic modalities include endoscopy, computer tomography, magnetic-resonance imaging, and virtual angiography. Under general anesthesia with transnasal endotracheal reinforced tube, an endoscopic approach by using of a Weerda distenting diverticuloscope is achieved. Manipulations are performed with a flexible gastroscopy and 10 mm 30° angled laparoscope. The flexible endoscope passes easily around the mass and reaches the stomach without any signs of esophageal wall injury. After catching the polyp’s pedicle with a suture loop, it is sclerotized and resected with 5-mm laparoscopic Ligasure. There are no pertinent publications on this approach in the literature available yet. Because of the considerable polyp size, a transgastric extraction is carried out. The postoperative course is uneventful. There is no recurrence after two-year follow-up.

Keywords: Gastrointestinal endoscopic surgery, Giant esophageal fibrovascular polyp, Weerda diverticuloscope, Ligasure, Bipolar tissue sealing device

Introduction

Benign esophageal tumours are less common than an esophageal malignancies. Usually, they are asymptomatic and develop unsuspected for long period of time. These lesions are characterized by their ability to reach a gigantic size and cause dysphagia, chest pain, food regurgitation, weight loss, which are typical of other more common diseases of the esophagus. There are several publications describing different approaches in the surgical treatment of the benign esophageal neoplasms. We present a case of a 65-year-old male patient with a gigantic 14.5×5.5×4 cm esophageal polyp originating from the hypopharynx. Under general anesthesia with transnasal endotracheal reinforced tube, the significant size indicates a non-standard approach including tranoral endoscopic resection and transgastric extraction. Polyp’s pedicle was injected with sclerosant and resected with laparoscopic 5-mm Ligasure devices that provided excellent hemostasis. The postoperative course was uneventful. No recurrence was established during a two-year follow-up.

Case Report

A 65-year-old male patient presented with complains of slowly progressing dysphagia for solid foods, food regurgitation, and weight loss of 20 kg over six months and anemia (Hb 81 g/L). Endoscopy revealed a large esophageal pedunculated polyp with partially smooth surface with large area of superficial ulceration at the distal half taking up the entire lumen and reaching up to 3 cm in front of the cardio-esophageal junction (Figure 1). The biopsy showed necrotizing tissue with inflammatory changes, which could not exclude a malignant origin. Preoperative contrast-enhanced computed tomography (CT) and magnetic-resonance imaging (MRI) confirmed the presence of a heterogeneous tumour sized 14.5×4×3.6 cm of clavate shape (Figures 2 and 3). It arosed from the anterior esophageal wall immediately after the hypopharynx with a narrow and long pedicle without infiltration to adjacent structures. No thoracic or abdominal lymphadenopathy was established at all. The virtual angio reconstruction (Figure 2) did not demonstrate any increased tumour vascularization and enlarged
blood vessels at the polyp's pedicle, which defined the further surgical strategy.

The patient was planned for transoral endoscopic excision. He was placed in supine position (Figure 4). Under general anesthesia with transnasal endotracheal reinforced tube, patient's head was deflected and a Weerda distending diverticuloscope (Karl Storz, Tuttlingen, Germany) was introduced. The manipulations were performed with a flexible gastroscope and 10 mm 30° angled laparoscope. The localization of the pedicle and the head of the polyp were verified endoscopically once again. Handling the polyp proved to be difficult, because of its relative rigidity. Still a flexible endoscope with an external diameter of 10 mm could be passed easily around the mass and reached the stomach without any signs of injury to the esophageal wall. For a better control of the pedicle, a polydioxanone (PDS) loop 1-0 suture was inserted in a 4 Fr catheter and placed from the polyp's base to the pedicle (Figure 5). The loop was retracted...
and lifted the polyp from the esophageal surface. To avoid bleeding the polyp base was injected with 2 mL of sclerosant (polidocanol, Aethoxysklerol®) and later transected with 5 mm laparoscopic vessel sealer and divider (LigaSure™, Covidien Inc, Minneapolis, MN, USA) (Figure 5). Due to its large diameter, the polyp could not be extracted through the pharynx and therefore it was extracted via minilaparotomy and small gastrotomy. Microscopically, there was a squamous epithelium with hydropic degeneration in the spinous layer, edematous fibrovascular stroma, large areas with ulcerated mucosa, coagulation necrosis and fresh granulation tissue (Figure 6). The postoperative period was uneventful and the patient was discharged on the second postoperative day. There was no recurrence after two-year follow-up.

Discussion

The benign esophageal tumours are rare diseases. Based on the analysis of nearly 20000 autopsies performed over 50 years, Plachta found out only 90 benign esophageal tumours with a prevalence rate of 0.45% [1]. The most common classification divides them in two groups of intramural and intraluminal lesions [2]. The latter group consists of fibrolipomas, fibromixomas, hamartomas, fibromas, and lipomas, which are generally ranked by the World Health Organization as fibrovascular polyps (FVPs) [3]. Histologically, giant esophageal polyps originate from the esophageal submucosa and are covered by squamous epithelium with fibrovascular axis, consisting of adipose and connective tissue to varying degrees as well as a well-developed vascular network [3,4]. The most frequent localizations of the benign esophageal tumours are in the middle and lower thirds of the thoracic esophagus. Tumours arising from the cervical esophagus are less common except for FVPs. Malignant transformation is rare although squamous cell carcinomas originating from the epithelium and liposarcoma arising from the stroma have been reported [5,6].

Usually, FVPs are characterized by slow growth that allows them to reach a formidable size (up to 25 cm) prior to diagnosis [7]. Their symptoms are overlapping with other more common upper gastrointestinal tract diseases. Dysphagia (62% to 87%) is the most common presenting symptom followed by regurgitation of food or the polyp itself (13% to 38%), sensation of a lump (25%), weight loss (13%), respiratory symptoms (25%), odynophagia (6% to 7%), and chest pain (8%) [9-10]. Anemia is also reported due to ulcerations [11]. Regurgitation of the polyp in the oral cavity or obstruction of the larynx may have potentially lethal consequences [9-12]. FVPs are usually solitary lesions although cases of synchronous polyps can be observed, too [13,14].

Endoscopy could easily establish the presence of a large esophageal polyp that takes up the entire lumen and identify the polyp’s pedicle. Erroneous diagnosis such as achalasia is rarely reported [15]. The differential diagnosis between other esophageal tumours such as leiomyoma is not difficult. Endoscopic ultrasound (EUS) has been reported as a method to demonstrate the submucosal origin of analogical polyps [16,17].

Endoscopic biopsies could rarely provide FVP diagnosis prior to the procedure and may even lead to misdiagnosis and too radical treatment strategy [10,18]. Both CT and MRI represent key-stone diagnostic tests. There are smooth but variably lobulated intraluminal masses that originate in the lower cervical esophagus and present with variable sizes and distal extents, with an average length of 15 cm [8].

The combination of CT and MRI provides axial, coronal and sagittal scans, which are important in the exact pedicle identification and further treatment planning. CT also provides the option of virtual angiography that may confirm the presence of large blood vessels at the polyp base. EUS provides information about polyp diameter; vascularity and insertion point [19]. Pathomorphological examination reveals polypoid masses covered by unremarkable squamous epithelium composed of varying amount of fibrovascular and adipose tissue [3].

The removal of esophageal and hypopharyngeal polyps is strongly recommended due to symptoms and potentially lethal complications [20].

Various approaches and techniques are used for the resection of giant esophageal polyps. Some of them described in the literature available are summarized on Table 1. The most commonly included transcervical and transthoracic esophagectomies, although endoscopic approach is also feasible for giant polyps of the upper esophagus and hypopharynx.

Most commonly, the polyp is removed by transcervical esphagotomy and less frequently, by thoracotomy [11,13,14,21-27]. Thoracotomy or even esophagectomy due to preoperative malignant histology has also been described [22]. Endoscopic resection is possible even in larger (>15 cm) lesions.

Usage of Weerda diverticuloscope for granting the direct endoscopic approach to the lesion has been reported [26,27]. Direct endoscopy without any complementary tools to enhance the visualization at resection site has been described, too [28]. In the majority of the cases reported with endoscopic approach, a rigid laryngoscope is used. In our case, the visualization has been achieved by means of Weerda distending diverticuloscope, which has proven its advantages for diagnostic and surgical...
interventions in patients with upper airway and digestive system disorders [29]. Its opening tip provides wider operative field and liberty for manipulation when compared with direct laryngoscopes with only slight increase in the space requirements [29]. Its opening tip provides wider operative field and liberty for manipulation when compared with direct laryngoscopes with only slight increase in the space requirements [29].

Endoscopic procedure safety is provided by several key-points. Manipulation on the large tumour mass may cause compression on the airways. As some authors underline the importance of enforced endotracheal tube, we recommend this approach as standard for every procedure on the hypopharynx [23,29]. Bleeding in the narrow settings of endoscopic procedure would be a great challenge and may require conversion to open procedure. Some authors have performed electrocaogulation and laser resection [23,31]. Electrocautery near to the endotracheal tube in the pharyngeal area is associated with risk of ignition and fire, therefore, we choose an approach minimizing the use of such devices [32,33]. Postprocedural bleeding has been reported in one case after electrocoagulation snare use managed by injection of adrenaline and hemostatic clips as well as in another case after electrocoagulation use managed by vessel compression and repeat coagulation.

No studies report initial injection of locally sclerosant agents yet. According to the institutional own experience in endoscopic polypectomy and, additionally, by analysis published by Facciorusso, polidocanol injection decreases the bleeding rate after polypectomy [34]. Although effective, some authors fear the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35]. We injected sclerosant at the polyp base and resected the risk of unpredictable depth of tissue injury caused by these agents [35].

<table>
<thead>
<tr>
<th>Author</th>
<th>Localization</th>
<th>Size</th>
<th>Approach/Extraction route</th>
<th>Resection Method</th>
<th>Complications</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schumacher, et al., 2009 [37]</td>
<td>Upper esophageal sphincter</td>
<td>Upper esophageal sphincter and reaching to the cardia</td>
<td>Thoracic esophagectomy</td>
<td>Esophagectomy</td>
<td>Esophagectomy</td>
<td>No</td>
</tr>
<tr>
<td>Paczona, et al., 2001 [26]</td>
<td>Cervical esophagus</td>
<td>22 cm x 6.0 x 3 cm</td>
<td>Transoral</td>
<td>Ligation, snare electrocoagulation</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Drenth, et al., 2002 [12]</td>
<td>Two polyps in the hypopharynx -1993</td>
<td>1.5×2 cm and 20 cm</td>
<td>Transorally and left cervical esophagostomy</td>
<td>Snare coagulation and resection</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Hypopharynx - 1999</td>
<td>4 cm</td>
<td>Cervical esophagostomy</td>
<td>Resection</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypopharynx - 2001</td>
<td>18/3×6.3 cm</td>
<td>Cervical esophagostomy</td>
<td>Resection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fries, et al., 2002 [13]</td>
<td>Two polyps - hypopharynx and postcricoid region</td>
<td>11.8×3.4×2.2 cm, 3.0 x 2.5 x 1.0 cm</td>
<td>Cervicotony and transoral</td>
<td>Open resection, endoscopic resection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ozcelik, et al., 2003 [19]</td>
<td>Bellow the cricopharangeus muscle</td>
<td>2.5×1.5 cm</td>
<td>Cervicotony, esophagostomy</td>
<td>Ligation and excision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palacios, et al., 2003 [17]</td>
<td>Cervical esophagus</td>
<td>Upper esophageal sphincter to the cardia</td>
<td>Transhiatal esophagectomy</td>
<td>Esophagectomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoseck, et al., 2005 [23]</td>
<td>Anterior hypopharynx</td>
<td>26×10×4 cm</td>
<td>Laryngoscopy, pharyngotomy, laparotomy and gastroscopy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chouroumi, et al., 2008 [22]</td>
<td>Hypopharynx</td>
<td>from the cervical oesophagus to the upper body of the stomach</td>
<td>Cervical esophagotony, gastroscopy</td>
<td>Resection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee, et al., 2009 [20]</td>
<td>Two polyps - upper third of the oesophagus</td>
<td>4×4 cm and 6×6 cm</td>
<td>Left thoracotomy, esophagostomy</td>
<td>Excision</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Upper esophagus</td>
<td>5×6 cm</td>
<td>Transoral excision</td>
<td>Stapler resection</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, et al., 2009 [31]</td>
<td>Upper esophagus</td>
<td>17 x 5 cm</td>
<td>Endoscopic resection</td>
<td>Electrosurgical snare</td>
<td>Minor bleeding – adrenaline and hemoclips</td>
<td></td>
</tr>
<tr>
<td>Peltz, et al., 2010 [25]</td>
<td>Anterior cervical esophagus</td>
<td>5.5×5.5×13 cm</td>
<td>Cervicotony, esophagostomy</td>
<td>Submucosal resection of the pedicle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Millas-Gomez, et al., 2011 [30]</td>
<td>Right pyriform sinus</td>
<td>3×0.9 cm</td>
<td>Direct hypopharyngoscopy</td>
<td>Microsurgical Resection, cauterrization</td>
<td>Bleeding</td>
<td></td>
</tr>
<tr>
<td>Pallabazzer, et al., 2013 [10]</td>
<td>Hypopharynx</td>
<td>3 cm</td>
<td>Left cervicotony, pharyngotomy,</td>
<td>Stapler resection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sen, et al., 2014 [21]</td>
<td>Upper end of esophagus to the junction</td>
<td>10 × 4 cm size</td>
<td>cervicotony, esophagostomy</td>
<td>Resection</td>
<td>Compression on the endotracheal tube – tracheostomy</td>
<td></td>
</tr>
<tr>
<td>Nascimento, et al., 2014 [38]</td>
<td>Epiglottis and right pharyngoepligotic fold</td>
<td>11.5 × 0.8 cm</td>
<td>Directed laryngoscopy</td>
<td>Excision, cauterrization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haytoglou, et al., 2015 [36]</td>
<td>Posterior hypopharynx</td>
<td>13×3×2 cm</td>
<td>Transorally</td>
<td>Electrocautery resection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kumar, et al., 2016 [24]</td>
<td>Upper esophagus</td>
<td>15×4.5×3.5 cm</td>
<td>Cervicotony, esophagostomy</td>
<td>Resection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The extraction of unusually large polyps remains a problematic issue because its great diameter often does not allow it to pass through the postcricoid sphincter. In such cases, a two-field approach is used with endoscopic resection and extraction via small gastroscopy [12, 20, 23, 26, 36]. In general, polyp removal is eventful. Recurrences have been described in few cases only [12, 20].

In conclusion, the giant esophageal FVPs are rare benign tumors. The diagnosis is rarely problematic, although treatment planning requires endoscopy and imaging modality enabling the multiplanar reconstruction and small blood vessel identification. The impressive size of FVPs represents a treatment challenge. As proven by our and other author’s experience, endoscopic resection is safe and feasible with no recurrence. Gastroscopy presents an alternative to transcervical or transthoracic routes of extraction.

References