Left-Handed Overfeeding Maneuvers: A New Approach to Achieve US-Free Phacoemulsification

Andre Gustavo Rolim1,2, Andre Lins de Medeiros1,2,3*, Leandro Pessoa Mundim1,2, Maira Gomes Barbosa1,2 and Wilson Takashi Hida1,2,4
1Renato Ambrosio Eye Research Center, Brazil
2Hospital de Olhos de Brasilia (HOB), Brazil
3University of Edinburgh, Scotland
4Universidade de São Paulo

Abstract

We describe a straightforward technique to achieve phacoaspiration without ultrasound (US) usage for soft nucleus graded 1 and 2 [1]. Succeeding incisions, continuous curvilinear capsulorrhexis (CCC) and hydrodissection, a nucleus fracture is performed with the Nagahara chopper simply supporting the nucleus with the phaco tip. Then the nucleus is rotated 90 degrees and the same step is repeated to create an additional fracture. The first nucleus fragment is disassembled from the capsular bag and, allied with a high vacuum of 700+ mmHg the chopper overfeeds the aspiration line without contact the phaco tip as the purpose is not to perform multiple fractures but to keep a steady continuous aspiration pattern.

Introduction

Currently phacoemulsification is withstanding as the most accepted technique for elective cataract surgery performed worldwide for its forthright reproduction and good results [2-4]. Many techniques were described to effectively fracture the nucleus over the years and phaco chop became a popular approach. The standard vacuum setting for most surgeons who use the gravity dependent infusion system is 300 to 450 mmHg, as in this setting the postocclusion surge and the possibility of posterior capsule rupture exists [5]. Shi, et al. have reported that higher vacuums may improve the phacoemulsification efficiency with safety by using the monitored forced infusion system available in the Centurion® machine [6]. However, the phaco machine has improved in technology and now is providing a safe anterior chamber environment to higher vacuums of more than 700 mmHg with a minimum risk of surge [7-10].

We describe the left-handed overfeeding maneuvers (LeHOM) considering the surgeon as dexter, the phaco sine nocere (a concept for harmless eye surgery) and its advantages in soft cataract cases. By changing the surgery approach in multiple paths (retinal protection filter, nucleus fracture and phacoaspiration) we developed a new technique to achieve a US-free nucleus aspiration (Sine nocere approach).

Surgical Technique

The LeHOM technique is operated under topical anesthesia. Using the sine nocere concept, we use the retinal protection filter of the microscope as blue light may cause damage to the photoreceptors [11,12]. The procedure commences with a side-port incision and the anterior chamber is filled with Viscoat™ (Alcon Laboratories, Forth Worth, and Texas) vicosurgical device (OVD), then a 2.4 mm clear corneal incision is performed 90 degrees apart.

The machine is set at a ultrasound (US) power of 0% with a peristaltic pump, the vacuum is set at 700+ mmHg and the flow rate at 60 cc/min at Alcon Centurion® vision system (Alcon Laboratories, Forth Worth, Texas) with the active fluidics mode on and irrigation of 55 mmHg.

A 5.0 mm round CCC is performed and a complete hydrodissection is carried out. The Nagahara chopper is inserted underneath the anterior capsular edge to support the nucleus equator.

The irrigating mini-flared Kelman phaco tip (Alcon Laboratories, Forth Worth, and Texas) enters the anterior chamber and simply supports the central nucleus while a compressive motion is created with the Nagahara chopper to perform the
first nuclear fracture without vacuum or ultrasound usage. After the first fracture is effectively performed, the nucleus is rotated 90 degrees and the same step is repeated to create a second fracture, then the first nucleus fragment is disassembled from the capsular bag and, in a bevel-toward-fracture position, the nucleus is continuously overfed with vacuum. The chopper reaches about 0.1 mm of distance from the phaco tip but does not touch it as the purpose is to feed the phaco tip and not to fracture the nucleus. The same steps are repeated with the remaining nuclear fragments. Phacoaspiration is followed by irrigation/aspiration of the cortex and insertion of a posterior chamber intraocular lens in the bag.

While performing a femtosecond laser assisted cataract surgery (FLACS), we recommend a cross-pattern of two chops fragmentation and not the chop-cylinder or the frag pattern as the aim is to maintain a contiguity of the nuclear fragment to reach and maintain the highest vacuums provided by the phaco machine.

Discussion

Effective hydrodissection with free maneuverability of the nucleus is often sufficient to allow phacoaspiration using the LeHOM approach. This technique provides a safe and straightforward way of chopping the endonucleus within the capsular bag without ultrasound or vacuum usage. Ultrasound energy is associated with damage to intracamerall structures [3,4,13,14].

This technique represents an antithesis to the conventional phacoemulsification with ultrasound usage. We have tried to phacoaspirate the soft cataracts on a mono-manual phaco approach without success as it is necessary a continuous aspiration motion with the non-dominant hand that can only be provided by the overfeeding maneuvers of the aspiration line with the chopper. This technique was tried in harder nucleus and in other phaco machine devices without success as surge became an issue [10].

While performing the LeHOM-FLACS technique it is necessary to create whole fragments, hence the cube fragment pattern may break in discontiguity during the nuclear aspiration reducing the capability to maintain a high steady vacuum. The cubic fragments may handicap the surgery as through dissemblance they may lodge behind the iris, within the paracentesis or in the anterior chamber (Figures 1 and 2).

The main factor for achieving phacoaspiration by the LeHOM technique concerns the singular characteristic of Centurion™, in this machine, the anterior chamber IOP fluids control acts independently of the vacuum used, the flow rate or the variation of the flow rate, as previous studies have demonstrated [15,16]. In a post-occlusion break situation the variation of the IOP area obtained with Centurion™ ActiveFluidics™ vs Infiniti™ with a vacuum of 600 mmHg is about 3.3 times lower [15]. With a post-occlusion break, the variation of the IOP is about 2 times lower in the Centurion™ with ActiveFluidics™ in relation to the Infiniti™. In the situation of flow rate variation between 0-60 cc/min, the intraocular pressure variation with centurion active fluids was 2.5%, while in Infiniti™, this variation was 53.75% [16].

Our study group has performed this technique in more than
microscopy and the central corneal thickness of the cornea by the Oculus Pentacam. The patients were evaluated preoperatively, at the first postoperative day and three months after the surgery (Figure 3).

In this study, 5 of them (27.7%) were male and 13 (72.2%) were female. The corneal density was measured by the specular microscopy and the central corneal thickness of the cornea by the Oculus Pentacam. The patients were evaluated preoperatively, at the first postoperative day and three months after the surgery (Figure 3).

The mean age in group I (femto-assisted) was 57 years ± 6.4 and in group II was 55.1 years ± 11.55. The density of corneal endothelial cell at the third month postoperative was 2406 ± 315, 91 in group I and 2317 ± 441, 27 in group II. No statistical a thousand patients, as we have been developing it since 2016, with no complications regarding posterior capsule rupture/ vitreous prolapse reported. We have also developed a pilot study using this technique with 18 patients in which we evaluated the corneal endothelial changes after surgical treatment comparing femtosecond laser assisted and nonassisted phacoaspiration.
significance was found between cases and controls. The mean corneal thickness at the end of the first month was 543 ± 47, 07 in group I and 546 ± 25, 21 in group II, and no statistical significance was observed when the groups were compared. The analysis of figure 4 exhibits a shorter time of nucleus aspiration in group I when compared to group II. The standard deviation is higher in Group II due to two extreme times occurring in this group.

Figure 5 presents the volume of BSS used during the nucleus treatment, regardless of the next surgical steps. We can observe that the volume of BSS is lower in group I. Femtosecond laser pretreated group presented with a reduction of aspiration time and BSS volume used during the nucleus treatment and aspiration.

Supplementary data

Video

We show a series of 5 cases with the LeHOM approach. After a 5.0 mm round CCC and an effective hydrodissection are carried out, the Nagahara chopper is inserted underneath the anterior capsular edge to support the nucleus equator. The phaco carried out, the Nagahara chopper is inserted underneath the nucleus to support the central nucleus, a compressive motion is created with the Nagahara chopper to perform the first nuclear fracture without vacuum or ultrasound usage. After the first fracture is successfully accomplished, the nucleus is rotated 90 degrees and the same steps are repeated to create a second fracture, then the first nuclear fragments disassemble from the capsular bag and, in a bevel-toward-fragment phaco tip direction the nucleus is continuously aspirated with left handed repeated maneuvers and the highest vacuums of the phaco machine are achieved.

What This Paper Adds

- To date, many techniques were described with the use of choppers and ultrasound for fracturing and removing cataracts.

References

13. Krarup T, Holm LM, la Cour M, Kjaerbo H. Endothelial cell loss and refractive

